以梦为马,不负韶华

搜索
查看: 682|回复: 0
收起左侧

Biochemistry

[复制链接]
发表于 2010-12-21 17:20:04 显示全部楼层 |阅读模式

Biochemistry


Biochemistry is the study of chemical processes in living organisms. all living organisms and living processes are governed by Biochemistry. flowing through biochemical signalling By controlling information and the flow of chemical energy through metabolism; biochemical processes give rise to the seemingly magical phenomenon of life. Over the last 40 years biochemistry has become so successful at explaining living processes that now almost all areas of the life sciences from botany to medicine are engaged in biochemical research. Much of biochemistry deals with the structures and functions of cellular components such as proteins, carbohydrates, lipids, nucleic acids and other biomolecules although increasingly processes rather than individual molecules are the main focus. Today the main focus of pure biochemistry is in understanding how biological molecules give rise to the processes that occur within living cells which in turn relates greatly to the study and understanding of whole organisms.


Among the vast number of different biomolecules, many are complex and large molecules (called polymers), which are composed of similar repeating subunits (called monomers). Each class of polymeric biomolecule has a different set of subunit types. For example, a protein is a polymer whose subunits are selected from a set of 20 or more amino acids. Biochemistry studies the chemical properties of important biological molecules, like proteins, and in particular the chemistry of enzyme-catalyzed reactions.


The biochemistry of cell metabolism and the endocrine system has been extensively described. Other areas of biochemistry include the genetic code (DNA, RNA), protein synthesis, cell membrane transport, and signal transduction.


Originally, the biochemistry was generally believed that life was not subject to the laws of science the way non-life was. It was thought that only living beings could produce the molecules of life (from other, previously existing biomolecules). Then, in 1828, Friedrich Wohler published a paper on the synthesis of urea, proving that organic compounds can be created artificially.


The dawn of biochemistry may have been the discovery of the first enzyme, diastase (today called amylase), in 1833 by Anselme Payen. Eduard Buchner contributed the first demonstration of a complex biochemical process outside of a cell in 1896: alcoholic fermentation in cell extracts of yeast. Although the term “biochemistry” seems to have been first used in 1882, it is generally accepted that the formal coinage of biochemistry occurred in 1903 by Carl Neuberg, a German chemist. Previously, this area would have been referred to as physiological chemistry. Since then, biochemistry has advanced, especially since the mid-20th century, with the development of new techniques such as chromatography, X-ray diffraction, dual polarisation interferometry, NMR spectroscopy, radioisotopic labeling, electron microscopy and molecular dynamics simulations. These techniques allowed for the discovery and detailed analysis of many molecules and metabolic pathways of the cell, such as glycolysis and the Krebs cycle (citric acid cycle).


Another significant historic event in biochemistry is the discovery of the gene and its role in the transfer of information in the cell. This part of biochemistry is often called molecular biology. In the 1950s, James D. Watson, Francis Crick, Rosalind Franklin, and Maurice Wilkins were instrumental in solving DNA structure and suggesting its relationship with genetic transfer of information. In 1958, George Beadle and Edward Tatum received the Nobel Prize for work in fungi showing that one gene produces one enzyme. In 1988, Colin Pitchfork was the first person convicted of murder with DNA evidence, which led to growth of forensic science. More recently, Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for discovering the role of RNA interference (RNAi), in the silencing of gene expression


Today, there are three main types of biochemistry. Plant biochemistry involves the study of the biochemistry of autotrophic organisms such as photosynthesis and other plant specific biochemical processes. General biochemistry encompasses both plant and animal biochemistry. Human/medical/medicinal biochemistry focuses on the biochemistry of humans and medical illnesses.

文章来源:http://en.wikipedia.org/wiki/Biochemistry

评分

参与人数 1韶华币 +1 收起 理由
浪子小刀 + 1

查看全部评分

 楼主| 发表于 2010-12-21 17:22:18 显示全部楼层
回复 1# guidechem


    希望大家给点分加加油,谢谢,有意继续交流的可以到http://www.guidechem.com/,如有疑问,欢迎加QQ:454069101
发表于 2010-12-22 08:18:33 显示全部楼层
加分了,哈哈,有点少,起个头头
懒得打字嘛,点击右侧快捷回复
高级模式
B Color Image Link Quote Code Smilies |上传

本版积分规则

手机版|以梦为马,不负韶华

GMT+8, 2025-1-10 11:21

Powered by 以梦为马,不负韶华

© 2024-2099 Meng.Horse

快速回复 返回顶部 返回列表