在我的一生中,我见证了两次让我觉得是革命性的技术展示。 第二个大惊喜是在去年。自2016年以来,我一直在与OpenAI团队会面,并对他们的稳步进展印象深刻。在2022年中期,我对他们的工作非常兴奋,以至于我向他们提出了一个挑战:训练一种人工智能来通过高级生物学考试。使它能够回答它没有专门接受训练的问题。(我选择了AP Bio,因为这个考试不仅仅是关于科学事实的简单复述——它要求你对生物学进行批判性思考。)如果你能做到这一点,那么你就会取得真正的突破。 在9月份,当我再次与他们会面时,我惊奇地看着他们向GPT,他们的AI模型,提出了60个AP Bio考试的多项选择题,并且它答对了59个。然后,它回答了六个开放性问题,写出了出色的答案。我们让一位外部专家评分,GPT获得了5分,这是最高可能的分数,相当于在大学水平的生物学课程中获得A或A+。 我知道我刚刚见证了自图形用户界面以来最重要的技术进步。 人工智能的发展和微处理器、个人电脑、互联网和手机的创造一样基础。它将改变人们工作、学习、旅行、获得医疗保健和相互沟通的方式。整个产业将围绕它重新定位。企业将凭借其使用人工智能的能力来区分自己。 我一直在思考人工智能如何可以减少世界上最严重的不公平现象。 气候变化是另一个问题,我相信人工智能可以使世界更加公平。气候变化的不公正之处在于,受到最严重影响的人——全球最贫困的人——也是最少为问题做出贡献的人。我仍在思考和学习人工智能如何可以帮助解决这个问题,但是在本文后面,我将提出一些潜力巨大的领域。 任何新技术的革新都会让人们感到不安,人工智能也不例外。我理解为什么——它提出了有关劳动力、法律系统、隐私、偏见等方面的难题。人工智能也会出现事实错误和幻觉。在我建议一些缓解风险的方法之前,我将定义我所说的人工智能,并详细介绍它将如何帮助赋予人们工作能力、拯救生命和改善教育。 从技术上讲,人工智能一词指的是创建用于解决特定问题或提供特定服务的模型。像ChatGPT这样的技术就是人工智能,它正在学习如何更好地进行聊天,但不能学习其他任务。相比之下,人工通用智能是指能够学习任何任务或主题的软件。目前,人工通用智能还不存在——计算机行业正在进行激烈的辩论,关于如何创建人工通用智能,以及是否可以创建它。 我回想起个人计算机革命早期,当时软件行业如此之小,以至于我们大多数人都可以站在会议舞台上。今天它是全球性的行业。由于巨大的部分现在正在将注意力转向人工智能,创新将比微处理器突破后我们经历的创新速度更快。很快,人工智能之前的时代将会看起来像在计算机上使用C:>提示符而不是在屏幕上敲击一样遥远。 尽管在许多方面人类仍然比GPT更优秀,但有许多工作很少使用这些能力。例如,销售(数字或电话)、服务或文件处理(如应付账款、会计或保险索赔争议)等许多任务需要做出决策,但不需要持续学习的能力。企业为这些活动设有培训计划,在大多数情况下,它们有很多良好和糟糕工作的示例。人类使用这些数据集进行培训,很快这些数据集也将用于训练人工智能,从而使人们更有效地完成这项工作。 最终,您控制计算机的主要方式将不再是指针和单击或在菜单和对话框上敲击。相反,您将能够用简单的英语书写请求。(不仅是英语——人工智能将理解世界各地的语言。今年早些时候,在印度,我会见了正在开发将理解当地许多语言的人工智能的开发人员。) 人工智能的进步将使创建个人代理成为可能。 企业级代理将以新的方式赋予员工权力。了解特定公司的代理将为其员工提供直接咨询,并应该成为每个会议的一部分,以便它可以回答问题。它可以被告知保持沉默或鼓励其发表意见。它将需要访问公司的销售、支持、财务、产品日程和与公司相关的文本。它应该阅读与公司所在行业有关的新闻。我相信,结果将是员工变得更有生产力。 全球健康和教育是两个迫切需要的领域,而没有足够的工人来满足这些需求。如果正确使用,人工智能可以帮助减少这些领域中的不平等。这些应该是人工智能工作的重点,因此我现在将转向它们。 首先,它们将帮助医护人员节省时间,帮他们处理某些任务,例如处理保险索赔、处理文件工作,以及从医生的诊断中起草笔记。我预计这个领域将会有很多的创新。 例如,在那些国家,很多人永远没有机会去看医生,而 AI 将会帮助那些能看到医生的卫生工作者更有效率。(开发 AI 驱动的超声波机器,它能用最少的培训时间就能使用,就是一个很好的例子。) AI 甚至会让患者能够进行基本的分流,获取如何处理健康问题的建议,并决定是否需要寻求治疗。 人们需要看到 AI 对整体医疗保健有益,尽管它们不会是完美的,会犯错。AI 必须经过非常仔细的测试和适当的监管,这意味着它们的采用速度比其他领域要慢。但是人类也会犯错误。而没有医疗保健也是一个问题。 下一代工具将更加高效,并能够预测副作用并确定剂量水平。盖茨基金会在 AI 中的一个优先事项是确保这些工具用于影响世界上最贫穷的人们的健康问题,包括艾滋病、结核病和疟疾。 教育 但我认为,在未来5到10年内,由人工智能驱动的软件将最终实现革命性地改变人们教学和学习的方式。它将知道你的兴趣和学习风格,因此可以量身定制内容,以保持你的参与度。它将测量你的理解程度,注意你何时失去兴趣,并了解你喜欢的动机类型。它将提供即时反馈。 当然,AI在能够做到理解某个学生最佳的学习方式或他们的动机方面需要大量的培训和进一步的发展。即使一旦技术得到完善,学习仍将取决于学生和教师之间良好的关系。它将增强 - 但永远不会取代 - 学生和教师在课堂上共同进行的工作。 我知道很多老师担心学生在使用GPT来写作文。教育工作者已经开始讨论如何适应这项新技术,我猜这些讨论还将持续一段时间。我听说过一些老师已经找到了聪明的方法来将这项技术融入他们的工作中,例如允许学生使用GPT创建第一稿,并将其个性化。 你可能已经读过关于当前人工智能模型存在问题的报道。例如,它们不一定擅长理解人类请求的上下文,导致一些奇怪的结果。当你要求AI编造一些虚构的事情时,它可以很好地完成。但是当你要求它给你旅行建议时,它可能会建议一些不存在的酒店。这是因为AI不足以了解你请求的上下文,以便知道它是否应该编造虚假酒店,还是只告诉你有空房的真实酒店。 其他问题不仅仅是技术问题。例如,使用AI的人类可能会构成威胁。像大多数发明一样,人工智能可以用于善良的目的或恶意的目的。政府需要与私营部门合作,限制风险。 超级智能人工智能(AGI)将出现在我们的未来。与计算机相比,我们的大脑运作速度极慢:大脑中的电信号速度是硅芯片信号速度的1/100,000。一旦开发者能够概括一个学习算法并以计算机速度运行它——这可能需要十年或一百年——我们就会拥有一个极其强大的AGI。它将能够做到人脑可以做到的一切,但不受记忆容量和操作速度的实际限制。这将是一种深刻的变革。 但是,过去几个月的突破并没有使我们距离强AI实质上更接近。人工智能仍然无法控制物理世界,也不能确立自己的目标。最近有一篇关于与ChatGPT交谈的《纽约时报》文章引起了很多关注,其中ChatGPT表示它想成为人类。这是一个有趣的观察,表达了该模型情感上的人类特点,但它不是有意义的独立指标。 下一个前沿领域 在软件方面,驱动 AI 学习的算法将变得更好。在某些领域(例如销售),开发人员可以通过限制 AI 工作的范围并给它们提供特定于该领域的大量训练数据,使其变得非常准确。但一个重要的未解决问题是,我们是否需要为不同的用途开发许多这些专门的 AI——比如一个用于教育,另一个用于办公室生产力——或者是否可能开发出一种人工智能通用型,可以学习任何任务。在这两种方法上将会有巨大的竞争。 首先,我们应该尝试平衡关于 AI 的不良影响的担忧——这是可以理解和有效的——与其改善人们生活的能力。为了最大程度地利用这项卓越的新技术,我们需要在抵御风险和将利益扩展到尽可能多的人之间取得平衡。 虽然我们不应该等待这种情况的发生,但思考人工智能是否会识别不平等并尝试减少它是有趣的。在看到不平等时,你需要有一种道德意识,还是一台纯粹的理性人工智能也能看到它?如果它确实认识到不平等,它会建议我们采取什么行动? 我很幸运参与了个人电脑革命和互联网革命。我对此时此刻同样感到兴奋。这种新技术可以帮助世界各地的人们改善生活。同时,世界需要确立规则,以使人工智能的任何不利因素远远超过其好处,并使每个人都能享受到这些好处,无论他们住在哪里或拥有多少钱。人工智能时代充满了机遇和责任。
|