【Design and Control of Distillation Systems for Separating Azeotropes】
马后炮化工组织翻译新书校审工作进行。本书翻译作者:梁建成Design and Control of Distillation Systems for Separating Azeotropes
https://xueshu.baidu.com/usercenter/paper/show?paperid=f04890b746ddf10835f0ac1012cd6443&site=xueshu_se
英文目录如下:
CONTENTS
PREFACE xv ACKNOWLEDGEMENTS xvii
PART 1 FUNDAMENTALS AND TOOLS 1
1 INTRODUCTION 3
1.1 History / 4
1.2 Applications / 5
1.3 Literature / 5
1.4 Multiple Steady States / 6 References / 8
2 PHASE EQUILIBRIUM 11
2.1 Phase Equilibrium Relationships / 12
2.1.1 Vapor–Liquid Equilibrium / 12
2.1.2 Liquid–Liquid Equilibrium / 13
2.2 Equations Describing Phase Equilibrium Relationships / 14
2.2.1 Liquid Vapor Pressure / 14
2.2.2 Liquid Activity Coefficients / 14
2.3 Diagrams For Binary Systems / 17
2.4 Ternary Diagrams / 19
2.4.1 Residue Curves and Distillation Boundaries / 19
2.4.2 Liquid – Liquid Equilibrium Envelope / 21
2.4.3 Isovolatility Curve / 22
vii
viii
CONTENTS
2.5 Data Regression / 25
2.5.1 Sources of Experimental Data / 25
2.5.2 Azeotrope Search / 26
2.5.3 Steps for Regression / 26
2.6 Group Contribution Method / 38
2.7 Conclusion / 43
References / 43
STEADY-STATE DESIGN IN ASPEN PLUS 45
3.1 Building a Steady-State Model / 45
3.1.1 Defining the Flowsheet / 46
3.1.2 Entering Components / 49
3.1.3 Selecting Physical Property Method / 53
3.1.4 Entering Feed Stream Data / 54
3.1.5 Entering Unit Operation Block Data / 55
3.1.6 Running the Simulation / 57
3.1.7 Using Design Spec/Vary Function in RadFrac / 59
3.1.8 Creating Reports, Saving Files, and Opening an Existing Simulation / 68
3.2 Unit Operation Blocks Used in this Book / 72
3.2.1 RadFrac / 72
3.2.2 Decanter / 80
3.2.3 Column with External Decanter and Recycle / 82
3.2.4 Heat Exchangers / 83
3.3 Add a Nondatabank Component / 87
3.4 Conclusion / 94
References / 95
DYNAMICS AND CONTROL IN ASPEN DYNAMICS 97
4.1 Sizing of Process Vessels / 98
4.1.1 Distillation Columns / 98
4.1.2 Flash Tanks / 102
4.1.3 Decanters / 104
4.2 Sizing of Pumps, Compressors, and Control Valves / 109
4.3 Controllers and Dynamic Elements / 113
4.3.1 Equipment Sizing / 115
4.3.2 Pressure Checking and Exporting / 116
4.3.3 Default Control Structure and Simplified Heat
Transfer Models / 116
4.3.4 Installing Controllers / 117
4.3.5 Controller Faceplates and Parameters / 121
3
4
4.3.6 Generating Dynamic Strip-Chart Plots / 124
4.3.7 Running the Simulation / 125
4.4 Controller Tuning / 129
4.4.1 4.4.2 4.4.3
4.5 Ratio 4.5.1 4.5.2
Level Controllers / 129
Flow Controllers / 130
Temperature and Composition Controllers / 130
and Cascade Control / 137 Ratio Control / 137 Cascade Control / 143
4.6 Conclusion / 145
PART 2 SEPARATIONS WITHOUT ADDING
OTHER COMPONENTS
5 PRESSURE-SWING AZEOTROPIC DISTILLATION
5.1 Tetrahydrofuran – Water System / 149
5.2 Acetone – Methanol System / 151
5.2.1 Steady-State Design / 152
5.2.2 Control System Design / 155
5.3 Pentane – Methanol System / 159
5.3.1 Phase Equilibrium / 159
5.3.2 Steady-State Design / 159
5.3.3 Dynamics and Control / 162
5.4 Conclusion / 164
References / 164
6 PRESSURE SWING WITH HEAT INTEGRATION
6.1 THF – Water System Steady-State Design with Heat Integration
6.1.1 Partial Heat Integration / 166
6.1.2 Complete Heat Integration / 167
6.1.3 No Heat Integration / 172
6.2 THF – Water System Dynamics and Control / 174 6.2.1 Complete Heat Integration / 174
6.2.2 No Heat Integration / 184
6.2.3 Partial Heat Integration / 185
6.2.4 Pressure-Compensated Temperature Control / 190
6.2.5 Conclusion for a THF – Water System / 195
6.3 Heat Integration in an Acetone – Methanol System / 197
6.4 Conclusion / 197
References / 197
147
149
CONTENTS ix
/
166
165
x 7
CONTENTS
HETEROGENEOUS BINARY AZEOTROPES 199
7.1 n-Butanol – Water System / 200
7.2 Phase Equilibrium / 201
7.3 Steady-State Design / 202
7.4 Dynamics and Control / 208
7.4.1 Control Structure / 208
7.4.2 Results / 210 7.5 Conclusion / 215 References / 215
PART 3 SEPARATIONS USING A LIGHT ENTRAINER (HETEROGENEOUS
AZEOTROPIC DISTILLATION) 217
8 ISOPROPANOL–WATER (CYCLOHEXANE AS THE ENTRAINER) 219
8.1 Feasible Column Sequence for the Separation / 219
8.1.1 Propylene Glycol Monomethyl Ether – Water System / 219
8.1.2 Pyridine – Water System / 221
8.1.3 Isopropanol – Water System / 225
8.2 Steady-State Design of an Isopropanol – Water System / 227
8.2.1 Alternative Design 1 for a Two-Column System / 227
8.2.2 Proposed Design for a Two-Column System / 230
8.2.3 Optimal Design Flowsheet for a Three-Column System / 235
8.2.4 Comparison of Three Design Alternatives / 236
8.3 Overall Control Strategy Development / 238
8.3.1 Inventory Control Loops / 239
8.3.2 Tray Temperature Control Point(s) / 239
8.3.3 Simulation Results / 240
8.4 Conclusion / 243
References / 244
9 ACETIC ACID–WATER (ISOBUTYL ACETATE
AS THE ENTRAINER) 245
9.1 Comparison of Three Candidate Entrainers / 246
9.1.1 Azeotropic Composition and Organic Phase Composition / 257
9.1.2 Azeotropic Temperature / 257
9.1.3 Aqueous Phase Composition and Entrainer Pricing / 257
9.2 Control Strategy Development / 259
9.2.1 Dual-Temperature Control Strategy / 260
9.2.2 Single-Temperature Control Strategy / 271
CONTENTS xi
9.3 Industrial Column with Preliminary Dynamic Simulations / 274
9.3.1 Column Simulation / 275
9.3.2 Control Strategy Used in the Dynamic Simulation / 277
9.3.3 Dynamic Simulation Results / 279
9.4 Industrial Column with Continuous Side-Stream Draw Off / 282
9.4.1 Optimal Side-Stream Location and Flowrate / 283
9.4.2 Closed-Loop Dynamic Simulations with Load Disturbances / 284
9.4.3 Higher Side-Stream Flowrate / 286
9.4.4 Comparison with the Base Case / 287
9.5 Side Draw with a Practical Automatic Purging Strategy / 290
9.6 Conclusion / 293 References / 294
PART 4 SEPARATIONS USING HEAVY ENTRAINER (EXTRACTIVE DISTILLATION) 297
10
ISOPROPANOL–WATER (DIMETHYL SULFOXIDE
AS THE ENTRAINER) 299
10.1 Comparing Entrainers: Dimethyl Sulfoxide Versus Ethylene Glycol / 300
10.1.1 Isovolatility Curves / 300
10.1.2 Equivolatility Curves / 302
10.1.3 Binary VLE Diagrams / 304
10.2 Steady-State Design and Economical Analysis / 307
10.2.1 Design Flowsheet via Extractive Distillation / 307
10.2.2 Comparison to the Design Flowsheet Using
Heterogeneous Azeotropic Distillation / 313
10.2.3 Ideal Entrainer Using Heterogeneous
Azeotropic Distillation / 316
10.3 Overall Control Strategy Development / 317
10.3.1 Inventory Control Loops / 318
10.3.2 Tray Temperature Control Point(s) / 318
10.3.3 Simulation Results / 321
10.4 Conclusion / 324
References / 324
EXTRACTIVE DISTILLATION OF THE
ACETONE–METHANOL SYSTEM 327
11.1 Acetone–Methanol–Water Phase Equilibrium / 327
11.2 Steady-State Design / 329
11
xii
CONTENTS
11.3 Dynamics and Control / 335
11.4 Heat-Integrated System / 339
11.4.1 Design / 339
11.4.2 Control / 340
11.5 Effect of Solvent on Controllability / 344
11.5.1 Systems Studied / 345
11.5.2 Water Solvent / 347
11.5.3 DMSO Solvent / 348
11.5.4 Chlorobenzene Solvent / 349
11.5.5 Control System Design / 352
11.5.6 Dynamic Performance / 366
11.5.7 Conclusions for Controllability / 366
11.6 Conclusion / 367
References / 367
MAXIMUM-BOILING AZEOTROPES 369
12
12.1 Acetone – Chloroform System Steady-State Design
12.1.1 Pressure-Swing Distillation / 371
12.1.2 Extractive Distillation / 371
/ 369
12.2 Dynamics and Control / 375
12.2.1 CS1 Structure (Single-Temperature Control in
each Column) / 376
12.2.2 Analysis for Dual Temperature Control / 378
12.2.3 CS2 Control Structure / 381
12.3 Conclusion / 383
Reference / 383
PART 5 OTHER WAYS FOR SEPARATING
AZEOTROPES 385
13
BATCH DISTILLATION OF AZEOTROPES 387
13.1 Batch Extractive Distillation (Acetone – Methanol with Water as the Entrainer) / 387
13.1.1 Batch Distillation Operating Procedure / 388 13.1.2 Simulation Results / 391
13.1.3 Comparison of Operating Procedure Given in
Earlier Papers / 394
13.2 Batch Extractive Distillation (Isopropanol – Water with DMSO
as the Entrainer) / 396
13.2.1 Simulation Results with Constant Reflux Ratio and Constant Entrainer Feed Rate / 397
14
13.3.1 Acetic Acid Dehydration via Continuous Process / 404
13.3.2 Operation and Control of Heteroazeotropic Batch Distillation
Column / 406
13.3.3 Using Isobutyl Acetate as the Entrainer / 409
13.3.4 Using an Alternative Entrainer or no Entrainer / 412
13.3.5 Robustness of the Proposed Batch Operation / 417
13.3.6 Recycle of the Recovered Entrainer for the Next Batch / 421
13.4 Multivessel Heteroazeotropic Batch Distillation / 422
13.5 Conclusion / 426
References / 427
HYBRID DISTILLATION–PERVAPORATION SYSTEMS 429
13.3 Acetic
Acid Dehydration Via Heteroazeotropic Batch Distillation / 404
13.2.2 Varying the Reflux Ratio and Entrainer Feed Rate During Step 2 / 400
14.1 Introduction / 430
14.2 Pervaporation Model / 431 14.2.1 Diffusivities / 431
14.2.2 Dynamic Component and Energy Balances / 433
14.3 Pervaporation – Column System
14.4 Dynamics and Control / 440
14.5 Process Modification / 444
14.6 Conclusion / 449
/ 438
References / 449 INDEX
451
这是大师的著作,精馏的经典啊
这个要点个赞 必须点赞啊 {:1106_382:} 这个必须点赞 坐等新书上市! 期待新書上市~!! {:534:}{:534:}{:534:} 这个必须点赞! 钱老的大作,期待 厉害了,点赞 厉害,期待中 大师级别作品,点赞 期待新书 路过,给这个点个赞。 先给楼主点个赞 谢谢分享 期待新書上市 坐等新書上市! 期待出来先订书看看{:1110_550:}